Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles.

نویسندگان

  • Ping Yang
  • George W Kattawar
  • Kuo-Nan Liou
  • Jun Q Lu
چکیده

Two grid configurations can be employed to implement the finite-difference time-domain (FDTD) technique in a Cartesian system. One configuration defines the electric and magnetic field components at the cell edges and cell-face centers, respectively, whereas the other reverses these definitions. These two grid configurations differ in terms of implication on the electromagnetic boundary conditions if the scatterer in the FDTD computation is a dielectric particle. The permittivity has an abrupt transition at the cell interface if the dielectric properties of two adjacent cells are not identical. Similarly, the discontinuity of permittivity is also observed at the edges of neighboring cells that are different in terms of their dielectric constants. We present two FDTD schemes for light scattering by dielectric particles to overcome the above-mentioned discontinuity on the basis of the electromagnetic boundary conditions for the two Cartesian grid configurations. We also present an empirical approach to accelerate the convergence of the discrete Fourier transform to obtain the field values in the frequency domain. As a new application of the FDTD method, we investigate the scattering properties of multibranched bullet-rosette ice crystals at both visible and thermal infrared wavelengths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method

Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...

متن کامل

Implementation of a high-accuracy finite-difference scheme for linear wave phenomena

A high-accuracy finite-difference scheme is used to solve the two-dimensional time-domain Maxwell equations governing the propagation and scattering of electromagnetic waves. The scheme uses a seven-point spatial operator with an explicit six-stage time-marching method of Runge-Kutta type. Boundary formulations are given for perfect conductors and interfaces between dielectric media with differ...

متن کامل

FDTD Analysis of Top-Hat Monopole Antennas Loaded with Radially Layered Dielectric

Top-hat monopole antennas loaded with radially layered dielectric are analyzed using the finite-difference time-domain (FDTD) method. Unlike the mode-matching method (MMM) (which was previously used for analyzing these antennas) the FDTD method enables us to study such structures accurately and easily. Using this method, results can be obtained in a wide frequency band by performing only one ti...

متن کامل

Staircase-Free Finite-Difference Time-Domain Formulation for General Materials in Complex Geometries

A stable Cartesian grid staircase-free finite-difference time-domain formulation for arbitrary material distributions in general geometries is introduced. It is shown that the method exhibits higher accuracy than the classical Yee scheme for complex geometries since the computational representation of physical structures is not of a staircased nature. Furthermore, electromagnetic boundary condi...

متن کامل

Efficient finite-difference time-domain scheme for light scattering by dielectric particles: application to aerosols.

We have examined the Maxwell-Garnett, inverted Maxwell-Garnett, and Bruggeman rules for evaluation of the mean permittivity involving partially empty cells at particle surface in conjunction with the finite-difference time-domain (FDTD) computation. Sensitivity studies show that the inverted Maxwell-Garnett rule is the most effective in reducing the staircasing effect. The discontinuity of perm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 43 23  شماره 

صفحات  -

تاریخ انتشار 2004